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Abstract: 

The Mu2e experiment is looking to detect a neutrino-less muon to electron conversion. The 

detection of such a rare event will hint towards previously unknown physics as such an event is 

dynamically suppressed by the Standard Model [1]. Detecting such an event is not easy and the 

experimental data must be digitized accurately to minimize error. Part of the digitization is being 

done with “of-the-shelf” analog-to-digital converters (ADC). To reduce cost and the number of 

components that could fail due to radiation exposure, it would be best to implement most if not all 

integrated circuits within the FPGA. This report explores the idea of designing and implementing 

an ADC within the FPGA. 

Introduction: 

 Over the last half a decade or so, 

Mu2e has been developing a detector to 

detect a neutrino-less muon to electron 

conversion. Such an event would be evidence 

of Charged Lepton Flavor Violation (CLFV). 

The tracker is the device that will track any 

particle, including high energy electrons, and 

send out information to data acquisition. But 

how does the tracker do this? 

 To detect such events, the tracker uses 

metalized Mylar drift tubes (Anode), which 

are filled with a 20:80 mixture of Ar and CO2 

gas and have a high voltage, gold-plated, 

tungsten sense wire (Cathode) running 

through the center [2]. An example of the 

straws can be seen in figure 1. Every time a 

charged particle passes through a straw, the 

gas inside will ionize. Due to the electric field 

created by the anode and cathode, the 

negatively charged particles move towards 

the sense wire, creating an electron 

avalanche. This process generates a signal 

large enough to be differentiated from noise 

and be digitized. 

 

Figure 1: Side view of straws (Left) A full panel 

with 96 straws (Right) [2] 

 The digitization process starts with 

the preamps, which are located at both ends 

of the straw. Each preamplifier, or preamp, 

will shape and amplify the signal coming 

from the sense wire. From the preamps, the 
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signals go through distinct Schmidt triggers 

before going to the time-to-digital converters 

(TDC). The TDCs measure the time 

difference between arrival times of the 

signals with a time division resolution of 

100psec [3]. The time difference is the used 

to estimate the position in which the event 

occurred at along the straw for pattern 

recognition. Also from the preamps, the 

signals are summed up and the resulting 

signal is fed into the input of an analog-to-

digital converter (ADC). The ADC will 

digitize the amplitude of the analog signal to 

determine the change in energy as it passed 

through multiple straws [3]. Knowing the 

change in energy and its path, we can 

determine the particle’s energy and 

determine what kind of particle it was. Once 

the analog signal has been digitized, it will be 

sent on to the Output Control & Buffer, 

Readout Controller (ROC), and lastly to Data 

Acquisition (DAQ). Figure 2 shows the 

system level layout of the digitization 

process. 

 

Figure 2: Digitization high level [3] 

 The current setup works well, but 

because the tracker will be in vacuum, all the 

electronics will be inside the tracker. 

Consequently, the electronics will be 

exposed to prolonged periods of radiation. 

Radiation can affect the programmability and 

even functionality of an integrated circuit 

(IC). To minimize the effects of the radiation 

two things can be done: changed failing 

components as needed or buy components 

that can withstand prolong exposure to 

radiation. However, buying an FPGA that 

can withstand large amounts of radiation and 

programming the “off-the-shelf” ICs into it 

can keep the cost down while minimizing the 

possibility of components failing. In the 

current setup, the ADC is the only “off-the-

shelf” IC. By using low voltage differential 

signaling (LVDS), we can implement the 

ADC functions into the FPGA.  

Materials: 

 The materials used for this research 

were all part of the samrtfusion2 starter kit. 

The kit used Microsemi’s M2S050-FGG484 

FPGA. To interact with the FPGA, the starter 

kit used Emcraft Systems’ extension board 

which contained a breadboard area. To 

communicated with and program the FPGA, 

the kit came with a FlashPro4 serial 

programmer. The kit can be seen in figure 3.  
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Figure 3: FPGA & Extension Board (Top) 

FlashPro4 Programmer (Bottom) 

 In addition to the hardware, software 

was a big part of this research. To write the 

VHDL code, compile the code, and program 

the FPGA, it was necessary to use 

Microsemi’s Libero v11.8 software. Libero 

made it simpler to program the FPGA as it 

takes care of placing and routing and 

allocating resources. A diagram of the initial 

system for sampling can be found in 

appendix A. Additional software used was 

ModelSim 5.4c and SoftConsole 4.0. 

ModelSim was used to run simulations to 

identify issues regarding synchronization and 

timing. Lastly, SoftConsole was used to run 

the code using the programmed FPGA to aid 

in debugging and to read information from 

RAM. 

 

Methods: 

 To sample an analog signal, a 

digitizing scheme needs to be selected.  For 

this project LVDS was chosen because it uses 

less power which means less heat generated. 

The way LVDS works is very simple; it has 

two inputs, one is the analog signal to be 

sampled and the other is the sampling clock. 

LVDS will compare if the sampling clock 

voltage level is below or above the analog 

signal. If its above, then LVDS will output 

logic low, and if it’s below then LVDS will 

output logic high. Figure 4 shows LVDS in 

action. 

 

Figure 4: Sampling Clock Input (Yellow), 

Analog Signal Input (Blue), LVDS Output 

(Purple) 

However, before LVDS can be used 

to sample anything, a sampling clock must be 

determined. Because the FPGA is a digital 

device, the clocks generated through it will 

be square-wave like. Unfortunately, this will 

not work with the LVDS scheme. To fix this 
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issue, the sampling clock will go through an 

RC filter that will turn the square-wave clock 

into a triangle-like wave. The values for the 

RC filter were chosen for a 3.5MHz sampling 

clock. The capacitance for the RC filter 

comes from the input and output pins. The 

resistor was chosen through trial and error to 

ensure that the voltage drop across the 

resistor was not too large and that the 

resulting sampling clock was as close to a 

triangle wave as possible. Figure 5 shows the 

before and after the sampling clock goes 

through the RC filter. 

 

Figure 5: Sampling clk generated by the FPGA 

(Top) and sampling clk after the RC filter 

(Bottom) 

 With the appropriate sampling clock, 

the analog signal was sampled. However, the 

output of the LVDS at this point was still just 

high or low logic. To turn the output into 

useful information, it is necessary to sample 

the output of the LVDS. The sample or 

“count” being store to the random access 

memory (RAM) is synchronous to the 

sampling clock (3.5MHz). The secondary 

sampling clock will define the resolution of 

the ADC as the ratio (secondary/primary) of 

the clocks is the number of discrete voltage 

levels.  For this setup, it the secondary clock 

was chosen to be 350MHz for a resolution of 

100 discrete voltage levels. The 350MHz 

secondary sampling clock will look at the 

LVDS output and counts how many clocks 

cycles the output was high. The count stored 

to RAM will be a number between zero and 

100. This process will repeat until the 9-bit 

RAM is fully populated with 512 samples. 

Once the RAM is filled up with count 

samples, it is possible to read them out and 

turn them into voltage levels. However, to do 

this it is necessary to use a program called 

Termite, which allows for the serial readout 

of the data stored in the RAM. Using Termite 

and SoftConsole to run the program, samples 

were exported from the RAM into an excel 

spread sheet. From here the samples can be 

analyzed and turned into voltage values. The 

simplest way to do this is to take each count 

and turn into a ratio between the count and 

the highest possible count (count/countMax). 
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To turn that into a voltage level, multiply the 

ratio with the peak-to-peak voltage. This will 

give us 2^9 voltage samples.  

Results & Discussion: 

With the samples now as voltages, it 

is possible to plot them in sequential order 

(sample 1 to sample 512). Figure 6 shows the 

resulting digitized waves for a couple 

different frequencies sine waves.

 

Figure 6: A period of a 50KHz sine wave sampled using FPGA (Top Left) Two periods of a 100KHz sine 

wave sampled using FPGA (Top Right) Sampled 100KHz sine wave on top of ideal sine wave (Bottom) 

However, from these plots one can 

tell that the ADC set up is not perfect. The 

current set up has two main issues that need 

to be tackled: limitations on the analog 

signal’s frequency and determining the 

performance of the ADC.   

The first issue is that the current set 

up is limited to sampling analog signals with 
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frequencies lower than 350KHz without 

reducing the sampling resolution. The reason 

for this limitation is that the resolution is 

directly proportional to the ration of 

secondary sampling clock to primary 

sampling clock. This becomes an issue 

because the FPGA itself cannot produce a 

secondary sampling clock higher that 

350MHz that could work properly.  

One way that this issue can be tackled 

is to replace the limiting secondary clock 

with something that can determine how long 

the LVDS output was high level and when it 

was low level. The current set up has the 

secondary sampling clock keeping track of 

how many clock cycles the output is high. An 

improvement here would be to use TDC 

within the ADC. Instead of counting the how 

many clock cycles are high level, the TDC 

will time stamp every time it sees a rising 

edge and falling edge. With this information, 

it is easy to determine for how long the output 

of the LVDS was high level by looking at 

difference between a rising edge and falling 

edge. This will allow for sampling of signals 

with much higher frequencies. However, one 

downfall of this solution is that this set up 

uses two separate RAMs (one for rising edge 

and one for falling edge). A diagram of the 

TDC implementation is shown in appendix 

A. 

The second issue that can be seen 

from the plots is that the samples can deviate 

from what the theoretical values should be. In 

figure 6, you can see the difference between 

the ideal sine wave (Orange) and the sampled 

sine wave (Blue). To determine whether 

these deviations are acceptable or not, it is 

necessary to quantify the performance of the 

implemented ADC. A common way to 

calculate the performance of an ADC is to 

determine its integral non-linearity and 

differential non-linearity. Integral non-

linearity (INL) is the maximum vertical 

deviation of your sample from the 

ideal/theoretical signal. Differential non-

linearity (DNL) in the other hand looks at the 

width of every “bin” and compares it the ideal 

width of an ideal ADC. The values 

determined from IDN and DNL are always in 

terms of least significant bit (LSB). This 

allows direct comparison of INL and DNL of 

different ADCs. 

Determining the INL and DNL of the 

ADC implemented will help determined a 

few different things. One is that it will tell us 

how well this ADC compares to the of-the-

shelf ADC that is being currently being used. 

Similarly, the INL and DNL can be used to 

determine the performance deviations as the 

code is changed and as the hardware setup 

changes. 
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Conclusion: 

 As a proof of concept implementing the ADC within the FPGA is possible. However, there 

are still improvements that need to be made to increase the resolution and accuracy of the ADC, 

while minimizing the number of resources used within the FPGA. At the moment, 0.18% of all D 

flip-flops, 0.22% of all look up tables, and 2.62% of all user input/outputs (I/O) are being used. 

Since there are two FPGAs per panel, the FPGA only needs to digitize signals from 48 straws, 

which means that the I/O usage percentage needs to be 2% or lower to cover all straws. In addition 

to minimizing the use of resources, the performance of the programmed ADC needs to be 

calculated to make sure that it is just as good as the of-the-shelf ADC before replacing it.  
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Appendix A: 

 

Initial set up to sample analog signals using LVDS and a secondary clock for the clock cycle count. 

 

Proposed improvement to ADC by using TDCs for secondary sampling instead of using a secondary clock. 


